On translation invariant families of sets

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On invariant sets topology

In this paper, we introduce and study a new topology related to a self mapping on a nonempty set.Let X be a nonempty set and let f be a self mapping on X. Then the set of all invariant subsets ofX related to f, i.e. f := fA X : f(A) Ag P(X) is a topology on X. Among other things,we nd the smallest open sets contains a point x 2 X. Moreover, we find the relations between fand To f . For insta...

متن کامل

Translation Invariant Julia Sets

We show that if the Julia set J(f) of a rational function f is invariant under translation by one and infinity is a periodic or preperiodic point for f , then J(f) must either be a line or the Riemann sphere.

متن کامل

On a Metric on Translation Invariant Spaces

In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.

متن کامل

Translation invariant mappings on KPC-hypergroups

In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.

متن کامل

Fourier type transform on translation invariant valuations on convex sets

Let V be a finite dimensional real vector space. Let V alsm(V ) be the space of translation invariant smooth valuations on convex compact subsets of V . Let Dens(V ) be the space of Lebesgue measures on V . The goal of the article is to construct and study an isomorphism FV : V alsm(V )−̃→V alsm(V ∗)⊗Dens(V ) such that FV commutes with the natural action of the full linear group on both spaces, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1975

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-34-1-63-68